The Biochemical Characterization of Two Carotenoid Cleavage Enzymes from Arabidopsis Indicates That a Carotenoid-derived Compound Inhibits Lateral Branching
نویسندگان
چکیده
منابع مشابه
The biochemical characterization of two carotenoid cleavage enzymes from Arabidopsis indicates that a carotenoid-derived compound inhibits lateral branching.
Enzymes that are able to oxidatively cleave carotenoids at specific positions have been identified in animals and plants. The first such enzyme to be identified was a nine-cis-epoxy carotenoid dioxygenase from maize, which catalyzes the rate-limiting step of abscisic acid biosynthesis. Similar enzymes are necessary for the synthesis of vitamin A in animals and other carotenoid-derived molecules...
متن کاملCloning and functional characterization of carotenoid cleavage dioxygenase 4 genes
Although a number of plant carotenoid cleavage dioxygenase (CCD) genes have been functionally characterized in different plant species, little is known about the biochemical role and enzymatic activities of members of the subclass 4 (CCD4). To gain insight into their biological function, CCD4 genes were isolated from apple (Malus x domestica, MdCCD4), chrysanthemum (Chrysanthemum x morifolium, ...
متن کاملSelective Inhibition of Carotenoid Cleavage Dioxygenases
Members of the carotenoid cleavage dioxygenase family catalyze the oxidative cleavage of carotenoids at various chain positions, leading to the formation of a wide range of apocarotenoid signaling molecules. To explore the functions of this diverse enzyme family, we have used a chemical genetic approach to design selective inhibitors for different classes of carotenoid cleavage dioxygenase. A s...
متن کاملUtilization of Dioxygen by Carotenoid Cleavage Oxygenases.
Carotenoid cleavage oxygenases (CCOs) are non-heme, Fe(II)-dependent enzymes that participate in biologically important metabolic pathways involving carotenoids and apocarotenoids, including retinoids, stilbenes, and related compounds. CCOs typically catalyze the cleavage of non-aromatic double bonds by dioxygen (O2) to form aldehyde or ketone products. Expressed only in vertebrates, the RPE65 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Biological Chemistry
سال: 2004
ISSN: 0021-9258
DOI: 10.1074/jbc.m409004200